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Learning Overview

- Types of medical sensor data

- Time-domain approaches: detrending/regression models

- Alternative decomposition: frequency/time-frequency

- State-space approaches: hidden markov models

- Handling data from multiple sensors

- General purpose Bayesian approaches: Gaussian Processes
- Cough-detection example

- Segmentation of heartbeats example

- Seizure prediction example



Physiological sensors (typically) capture data over time
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Short period fluctuations:
seasonality

Long period fluctuations:
cycles

Long-term directionality:
trend

Noise: stochasticity
Correlation in successive
times: autocorrelation
Distribution changes over
time:
stationarity/non-stationarity
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Time can be a discrete or continuous value

- Continuous time: defined ,
at every real value of T

- Discrete time: defined at
discrete intervals of T

- Real-world data is

continuous but sampled fo h
during collection as ‘
discrete data (sampling EARE N
ratey | e A 0 P
- Conversion to some
fidelity is possible [ [ [ [ N { {
- Impacts analysis 1 D

m eth Od S https://www.sp4comm.org/webversion/livre.html



Physiological sensors capture signal data

- “Signa|” iS a broad|y defined Mech;nical Wave Transducer Electrical
t nergy Energy
erm

- For today: signals are )) —— +m
analogue or digital

representations of analogue
physical quantities.

- Typically electrical
representations created by
a transducer

- Data encoded in voltage,
current and/or frequency

- Medicine: often directly
capturing bioelectrical

H https://www.klipsch.ca/blog/digital-vs-analog-audio
signals P P g/clo S
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Electrocardiogram (ECG): cardiac electrical signals

- Recording of heart’s electrical
activity using multiple electrodes

- Signal from cardiac muscle
{de,}polarisation during systole
(contraction) and diastole
(relaxation).

- Changes in pattern indicate
abnormalities (e.g., rhythm
disturbances, coronary blood flow,
electrolyte disturbances)

- Heart Rate: number of cycles
within pe riod ( b pm ) https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/holter-monitor

- Inter-Beat Interval: time between
cycles (ms)

- Heart Rate Variability: variation in
IBI

Holter monitor with ECG reading
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Electrocardiogram (ECGQG): inscrutable defined components

QR Ts
Atrium M s systole mmmmm
Ventricle | : _:l i diastole
P-wave: depolarisation of atria -> atrial systole
PR-interval
QRS complex: atrial diastole -> depolarisation of ventricles -> ventricular systole
ST segment

T-wave: repolarization of ventricles -> ventricular diastole
TP segment



Multiple sensors recording same signal improves data

By capturing a signal
from multiple sensors
we get a lot more
information

12-lead ECGs given
spatial resolution on
cardiac abnormalities
Increases analytical
complexity (e.g.,
handling inter-channel
covariance +
autocorrelation)
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Electroencephalogram (EEG): many channels

- Electrogram of macroscopic brain
activity measured from scalp (or
intracranially).

- Signal from sets of neuron action
potentials (ion-gated membrane
de/repolarisation)

- Different electrode layouts/types |mpact(
signal resolution
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Electroencephalogram (EEG): defined frequency bands

- EEG signals get divided
into defined frequency

Bt A st A A A p M ™
bands [12-30 Hz]

- Different brain activity

f ority  oete - AW WAV A
typified by band of majority 8-12 Hz]

of activity (e.g., Delta ->

Deep Sleep). [Ile:'?] M/\WW
- Patterns in EEG can

diagnose neurological [1"_3'}";] W\/

disorders (including sleep | R

Time

disorders and epilepsy) o dsec



How do we analyse sensor data”



Approaches for sensor data

- Moment (time domain) representation
- Considering the statistical properties of the input data jointly over time
- Spectral (frequency domain) representation
- Analysing the frequency-space representation
- Path (state space) representation
- Describe the system as a dynamic system over time
- Change representation: systems of differential equations
- Not going to discuss these but very common classical statistic/applied maths approach to

sensor data.
- Stochastic (SDEs) or deterministic (ODEs)



Decomposition enables
measuring strength of trend
and seasonality

Estimate trend/cycle using
moving average

Moving average: smooth
series using average over
window (size = order)
Detrend series: signal -
moving average

Moving average of detrended
data: seasonality
Multiplicative decomposition
(divide rather than subtract)
More advanced modern
decomposition methods
(STL/SEATS/X11)
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Time Domain: Differencing and AutoRegressive models

Differencing: computed differences between consecutive observations
AutoRegression: Predict value at time t based on linear combination of past
values of variable: yt = O1yt-1 +02yt-2 + ... + Bpytp + €t

Order of model is number of lagged values used

©1 = 0 represents white noise

@1 = 1 represents a random walk (with or without constant drift)

AR(1) AR(2)
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Time Domain: Moving Average models

- Instead of past values predict using past errors:
yt = €t + 01€t-1 +02€t-2 + ... + Opétq

- For stationary data AR(p) = MA(inf)
- Not to be confused with moving average smoothing used in decomposition

MA(1) MA(2)
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ARIMA: Combining Differencing, AR and MA models

- AutoRegressive Integrated Moving Average: Predict differenced value of y (y’)
using lagged values and errors

- yt=01yt-1+-+0pyt-p+O1et-1+-+Oqet-q+et
- ARIMA(p,d,q): p = order of AR, d = differencing degree, q = order of MA

- Requires MLE / Information Criterion to fit orders
- Core of gold-standard time-series regression/forecasting method

- More advanced methods:
Vector Autoregression (VAR): enables feedback between forecasted variable and predictors
(more realistic for real-world data)
Feed lagged values (or error) into ML model e.g., neural network with or without convolutions



Frequency/Spectral Domain

- Signal composed of multiple
frequencies (e.g., EEG power
bands)

- Can greatly simplify analysis
(offers simple decomposition)

- Feeds into many useful
mathematical tools (resonance,
harmonics, power spectral
densities, eigenvalues, ...)

- Several different ways of
converting time-domain to
frequency-domain

- Laplace and fourier methods are
most common




Fourier Transform:
Time -> Frequency

Inverse Fourier Transform:

Frequency -> Time

Decompose signal into series of angular
components

X(t) = a sin(wt + @) = a sin(2mrf t + @)

Location (frequency) and height
(amplitude) of frequency spectra peaks
(among other statistical summaries of
spectral space) can be used as input for
whatever model you want.

Frequency Domain: Fourier Transform
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Time-Frequency Domain: Wavelet Transforms

- Fourier transform has great frequency resolution but no time
resolution

- Wavelet allows retaining frequency and time resolution: capture
dynamic frequency spectra within signal

- Convolve signal with variety of waves (wavelets) with scale
(frequency) and location (time) properties

- Wavelet can be learnt a la convolutional kernels
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State-space models: Hidden Markov Models

- Data is represented resulting from a series of hidden states
- Model describes movements between hidden states

- Observed values are derived from hidden states

- Markov property: only previous state(s) matter

- More naturally discrete time (but continuous time possible)
- Well suited to classification/detection

» A canonical state space model:

Dynamics: Xk = f(Xk-1.9k). 9k ~ N(0,Qy),
Measurement: Vi = h(Xg, rg), ri ~ N(0.Rg)



Going beyond HMMs

- RNNs can act like HMMs more complex dependencies
- Alternative state space models: best of both worlds
- Attention mechanism similar to soft/variable-order HMMs

Maintain probabilistic structure of HMMs But use RNNs to model state dynamics

Hidden states T T OUiput
pact g ™ {?*.1‘) — State

Observations Inout

Attention weights Patient context

Hidden states

https://www.vanderschaar-lab.com/
papers/2022_AAAI_tutorial_web.pd

Observations



Decomposing data from multiple sensors

Measured medical
phenomena are
often a mixture of
signals from
different sources
Multiple sensors =
each captures those
sources (or a
subset)

Same source
through different
sensors will have
different
characteristics
(amplitude, lag) due
to sensor location

ICA decomposition

Independent Components
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Decomposing data from multiple sensors: Independent
Component Analysis

- Decompose signal into linear mixture of independent sources

- Part of most EEG analysis/processing workflows

- “Sphering” data (remove correlations between channels: cholesky
decomposition with covariation matrix)

|[dentify gaussian components of sphered (aka “whitened”) matrix
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Gaussian Processes: non-parametric models with infinite
parameters

- Bayesian linear regression: find distribution
over the parameters consistent with
observed data

- Gaussian process: find distribution over all
possible functions that are consistent with
observed data

- Defined by covariance kernel between
functions (draws from multivariate
gaussian)

- Can capture time, frequency, and
state-space models

- Yet another “should be an entire graduate

course”



Gaussian Process Prior

1 Samples from the GP prior
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Gaussian Process Prior

Infinite’ draws from the GP Prior




Constrain prior based on observed data: posterior

GP posterior with 3 points evaluated
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Constrain prior based on observed data: posterior

GP posterior with 3 points evaluated




Constrain prior based on observed data: posterior

GP posterior with 3 points evaluated




Probabilistic numerics: data efficient framework

Gaussian Process and Utility Function After 2 Steps
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Probabilistic numerics: data efficient framework

Gaussian Process and Utility Function After 3 Steps
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Probabilistic numerics: data efficient framework

Gaussian Process and Utility Function After 4 Steps
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Probabilistic numerics: data efficient framework

2.0 -

Gaussian Process and Utility Function After 5 Steps
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Probabilistic numerics: data efficient framework

Gaussian Process and Utility Function After 6 Steps
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Probabilistic numerics: data efficient framework

Gaussian Process and Utility Function After 7 Steps
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Probabilistic numerics: data efficient framework

Gaussian Process and Utility Function After 8 Steps
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Let's discuss some case studies



Cough detection/classification

- Quick/Non-invasive screening of COVID-19 could protect health
resources/optimise non-pharmaceutical interventions

- Crowdsourced cou%h recordings
a

| Cough Sound Files |

.

Pre-processing: Segmentation into multiple
chunk each contain a single cough

.

| Measuring module |

) MelSpectrum Spectrogram
Feature Extraction

Shallow and Deep Learning Pipeline .
w - o

v
Raw data segment

| Ensemble Learning |

[
| 8
Tonal MFCC

Chroma

l COVID-19 ‘ | Non-CE;VD—19 |

10.1038/s41598-021-95042-2



Cough detection/classification

Feature/classifier NB KNN LogitReg RF SGD XGB SVM
Pre NPV Pre NPV Pre NPV Pre NPV Pre NPV Pre NPV Pre NPV
Chroma 0.52 0.50 0.53 0.53 0.54 0.54 0.53 0.53 0.55 0.54 0.51 0.51 0.54 0.55
MelSpectrum 0.68 0.55 0.63 0.63 0.64 0.64 0.63 0.61 0.58 0.59 0.61 0.62 0.64 0.63
MFCC 0.55 0.64 0.60 0.59 0.61 0.63 0.68 0.64
PowerSpec 0.54 0.58 0.60 CNN/VGGish transfer: Precision 0.57 0.61 0.61 0.63 0.63
RAW 0.59 0.53 0.60 065 0.52 0.56 0.58 0.61 0.59
Spec 0.56 0.57 0.65 0.66 0.63 0.66 0.68 0.68 0.60 0.62 0.65 0.65 0.73 0.68
Tonal 0.53 0.63 0.53 0.55 0.55 0.55 0.56 0.56 0.51 0.51 0.57 0.53 0.53 0.54
- Spectrogram
Feature Extraction
Shallow and Deep Learning Pipeline
v
| Ensemble Learning |
[
Power Spectrum

l COVID-19 ‘ | Non-CE;VD—19 |

Chroma

Raw data segment

Tonal

10.1038/s41598-021-95042-2




Electrocardiogram (ECG)

Many useful and useless analyses of ECGs:

- Predict age and sex

- Detect anaemia (>90% accuracy with demographic data)
- Predict likelihood of low ejection fraction
- Automated detection of amyloid heart/cardiomyopathy/mitral valve prolapse
- Predict 1-year mortality (AUC > 0.85)

Methods generally require some form of ECG segmentation:
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Dynamic Time-Warping beat segmentation

R

- Clean ECG: just identify highest peaks
but ECG is often noisy
- Know what a heartbeat looks like: align

to ECG
- Often detecting arrhythmias/abnormal —=
heartbeats: may not align iaBiRNaRRaR| SRLARERERAAS BoRsRERaRan) I
_ . o _ A A A A A s
- Allow time to be “fuzzy” in alignment: | yEaamdaan
dynamic time warping TR ; " mliE
| T
™ ’ Right bundle branch block (RBBB)
A A 1) A A
//

Euclidean Matching Dynamic Time Warping Matching



Wavelet Transform Beat Segmentation
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Wavelet transforms can make R-peaks

very clear even in noisy data
Hand-crafted features can then be
extracted

- Alternatively deep models can
be used to learn wavelets and
segmentations (unsupervised or
supervised)

(1) Discrete wavelet transform

Input ECG Decomposed Filtered Reconstructed
signal coefficients coefficients ECG
Ey(ty) Ao Do Eg(ty)

(2) Shannon energy envelope calculation

.1st ordler Normalized Shannon SE envelope
differential differential energy (SEE)
of ECG
K D;(t,) Dy(ty) S(ty) Sqlty)

(3) Peak energy envelope calculation

1st.order Normalized PE I
dlff;rseggal differential Peak energy ?SE;;)P‘E
S P(t,)
Dy(t,) D(t;) z Py(t,)

(j) Peak energy envelope (PEE) (k) Estimated peak in PEE
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(1) Detected real R peaks

Initial Adjusted
R peaks R peaks
Ry(t;) Ru(t))

(4) Peak detection (5) R peak update
Final
mtervals R peaks
I(ty) Rg(ty)




Predicting epileptic seizures

- Epilepsy has a global prevalence of 1% (80 million)
- 30% of cases not treatable with anti-epiletic medication (2.4 million)
- Unpredictability of seizures is major source of mortality and morbidity
- Permanent intracranial EEGs now possible

b
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Telemetry Aclvi
device, device
implanted

10.1038/s41582-018-0055-2
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Lots of research

- 2007 review: insufficient evidence that seizures can be predicted

a
* International Workshops on
* Accumulating evidence Seizure Prediction
Numerous against seizure

First publications prediction claims ;

publication supporting * Rigorous seizure EPILEPSIAE | | Contest with long-term | | IWSP8

on seizure seizure prediction evaluation database dog and short-term (ICTALS)

prediction prediction frameworks created created human data meeting
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First application of First * Major review * |[EEG.org ' Contest with | | = Current review sets
nonlinear dynamics international outlines database long-term an interdisciplinary
to seizure prediction | | workshop on controversies and created - human data approach and
seizure sets guidelines * First-in-man revises guidelines
prediction * First international trial shows * Epilepsyecosystem.
(IWSP1) contest on seizure seizure org database
prediction prediction is created
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Nulls for periodic signal can be challenging

- Randomly shuffle seizure onset times => no pre-2007 actually worked

B RS I I I

0 30 60 S0 120 150 180 210 240 270 300 330 360
Days

https://en.wikipedia.org/wiki/File:Yang_and_Schank_2006_converging_diverging_cycles2.jpg



Most take a similar approach

- Inherently unbalanced data (seizures are rare compared to interictal EEG)

- Non-continuous datasets (i.e., inter-ictal and pre-ictal chunks) can make task
easier than reality

- Scoring predictions is challenging (prediction window / time to seizure onset)

- Suitable baseline performance metric (random prediction: diurnal?)

- Inter-person variance can be large (electrode placement, cycles)

________________________________________________________________________

J | eizure prediction system |
a J | Sai dicti |
Brain and body / Raw data ' Preprocessing Characteristics Decision system Advisory E
For example,  For example, + For example, extraction (deterministic system :
local or large _Zintracranial 1 artefact For example, or probabilistic) (discrete or :
cortical regions, = EEG, scalp EEG, '?" removal, ™ frequency-band ™ For example, = graded) :
deep brain, . microelectrode ' signal power, synchrony, thresholding, For example, ;
hippocampus 7 recordings, ' re-referencing model nonlinear flashing lighton !
s ECG, NIRS ! parameters classifier external device |
A D e e g e g g g g e J
- Seizure controller e s S iraiSatard 2
Interverntis For example, electrical stimulation, drug delivery, cooling Warning signal



American Epilepsy Society Seizure Prediction Challenge

- Winning entry: well-crafted features for GLMs (averages with RF)
- General approach: bunch of features into large ensemble models
- 2014 (still relatively early days for CNNs being used outside of images)

Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Patien Patien all

SVC_ica_psd logfBB AND ica xcorr-tpeak 0.8175 0.9253 ©0.8129 0.7371 0.8617 0.8346 0.7526 0.8493
SVC _ica ilingam-causalindex AND_ica PSDlogfcorrcoef 0.8125 0.9904 0.7356 0.6645 0.8540 0.9355 0.4759
0.8362

SVC_ica PSDlogfcorrcoef AND ica pwling5 0.8101 0.8916 ©0.7657 0.6663 0.9073 ©.8236 0.5182 0.8280
SVC_ica_cov_AND ica lmom-3 0.8081 0.9383 0.8109 0.6689 0.9018 ©.7532 0.6210 0.8458
SVC_ica_corrcoefeig AND ica PSDlogfcorrcoef 0.8071 0.9858 ©0.7791 0.6792 0.8970 0.9208 0.4920 0.8456
SVC _ica psd logfBB_AND ica PSDlogfcorrcoef 0.8063 0.9856 ©0.8033 0.7442 0.8477 ©0.9002 0.7618 0.8618
SVC_ica ilingam-causalorder AND_ica psd logfBB 0.8059 0.9685 0.8166 0.7623 0.8398 0.8660 0.8117 0.8596
SVC _ica ilingam-causalindex AND ica psd logfBB 0.8049 0.9783 ©0.8133 0.7610 0.8429 0.8653 0.8020 0.8619
SVC_ica_lmom-3 AND ica PSDlogfcorrcoef 0.8011 0.9816 ©0.7282 0.6717 0.8756 0.9547 0.4971 0.8400
SVC ica lmom-2 AND ica psd logfBB 0.8008 0.9755 0.8358 0.7575 0.8591 0.8486 0.8169 0.8643
SVC_ica ampcorrcoef-alpha-eig AND ica pib ratioBB 0.8004 ©0.9546 0.8612 0.7408 0.8666 0.8825 0.7204
0.8584

SVC ica pib ratioBB AND ica pwling5 0.7991 0.8737 0.8724 0.7281 0.8607 0.8163 0.5582 0.8353
SVC ica gcaus AND ica pib ratioBB 0.7973 0.9770 ©0.8548 0.7212 0.8296 0.8927 0.7014 0.8566
SVC_ica_lmom-4 AND ica psd logfBB ©.7962 0.9711 ©0.8367 0.7613 0.8446 0.8588 0.8186 0.8613
SVC_ica ampcorrcoef-high gamma AND ica phase-beta-sync 0.7921 ©.9450 0.7474 0.6594 0.9699 0.9032 0.5327
0.8439

SVC_ica ampcorrcoef-low gamma AND ica psd_logfBB 0.7899 0.9449 0.8367 0.7463 0.8714 0.8434 0.7935
0.8506

SVC_ica_ampcorrcoef-alpha-eig AND ica phase-beta-sync 0.7889 ©0.9789 0.7460 0.7239 0.9605 0.9157 0.5430
0.8559

SVC _ica ampcorrcoef-high_gamma-eig AND ica_corrcoef 0.7873 ©0.9320 0.8261 0.6221 ©0.9360 0.7966 0.6627
0.8563

SVC_ica PSDlogfcorrcoef AND ica xcorr-ypeak 0.7869 0.9826 ©0.7565 0.6327 0.9433 0.8982 0.7139 0.8641
SVC ica psd logf AND ica PSDlogfcorrcoef 0.7866 0.9816 ©0.8291 0.7369 0.8993 0.8998 0.7395 0.8725
SVC_ica phase-beta-sync AND ica pib 0.7770 0.9806 0.8304 0.6789 0.9556 0.9166 0.6674 0.8626
SVC ica ampcorrcoef-beta AND ica phase-beta-sync 0.7737 ©0.9440 0.7624 0.7355 0.9632 0.8947 0.5755




Modern approaches R

- Deep neural networks
(static or dynamic input)

- Learnt representations of
EEGs (wavelet, kernels,
attention, embeddings)

- Still suffer from inter-person
variance (and relatively
rarity of seizures):
individualised tuning

- Specificity still challenging

Feed Forward

Frequency-wise Channel-wise

conv5x1§ pool 5x1 conv 5x1 conv 3x1 pool 2x1§ pool 2x1 donse output
@2 | @32 @64 @128 @128} @32

dropout 0.2 dropout 0.2 dropout 0.5



High variance clinical trials: implementation science is key

- 3-100% accuracy across >=3 seizures across individuals
- Seizures are non-random (short and long-term temporal dependence)

- Diving into why they don’t haven’t worked:
Individual seizure frequency
long-term temporal variations in seizure frequency
multimodal distributions of seizure duration and inter-ictal intervals

Lessons learnt:

- EEGs give poor mechanistic insight

- Emerging ideas about how seizures work: excitation/inhibition imbalance vs
aberrant behaviour emerging from network parameters

- Implementation science is often more important than underlying ML



Learning Overview

- Types of medical sensor data

- Time-domain approaches: detrending/regression models

- Alternative decomposition: frequency/time-frequency

- State-space approaches: hidden markov models

- Handling data from multiple sensors

- General purpose Bayesian approaches: Gaussian Processes
- Cough-detection example

- Segmentation of heartbeats example

- Seizure prediction example



