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Learning Overview

- Types of medical sensor data
- Time-domain approaches: detrending/regression models
- Alternative decomposition: frequency/time-frequency
- State-space approaches: hidden markov models
- Handling data from multiple sensors
- General purpose Bayesian approaches: Gaussian Processes
- Cough-detection example
- Segmentation of heartbeats example
- Seizure prediction example 



Physiological sensors (typically) capture data over time

https://todaysveterinarypractice.com/diagnostics/continuous-glucose
-monitoring-in-veterinary-patients/

https://www.diabetesdaily.com/learn-about-diabetes/understanding-blood-sugars/is-my-bl
ood-sugar-normal/

- Time-series: set of values ordered by 
time

- Single object observed over time vs 
cross-section of multiple objects on 
common time axis

- Simple 1-dimensional variable: 
continuous glucose monitoring



Time-series often have multiple components

- Short period fluctuations: 
seasonality

- Long period fluctuations: 
cycles

- Long-term directionality: 
trend

- Noise: stochasticity
- Correlation in successive 

times: autocorrelation
- Distribution changes over 

time: 
stationarity/non-stationarity



Time can be a discrete or continuous value

- Continuous time: defined 
at every real value of T 

- Discrete time: defined at 
discrete intervals of T

- Real-world data is 
continuous but sampled 
during collection as 
discrete data (sampling 
rate) 

- Conversion to some 
fidelity is possible

- Impacts analysis 
methods https://www.sp4comm.org/webversion/livre.html



Physiological sensors capture signal data

- “Signal” is a broadly defined 
term

- For today: signals are 
analogue or digital 
representations of analogue 
physical quantities.

- Typically electrical 
representations created by 
a transducer

- Data encoded in voltage, 
current and/or frequency

- Medicine: often directly 
capturing bioelectrical 
signals

https://mynewmicrophone.com/how-do-microphones-work-a-helpful-illustrated-guide/

https://www.klipsch.ca/blog/digital-vs-analog-audio



Electrocardiogram (ECG): cardiac electrical signals

- Recording of heart’s electrical 
activity using multiple electrodes

- Signal from cardiac muscle 
{de,}polarisation during systole 
(contraction) and diastole 
(relaxation).

- Changes in pattern indicate 
abnormalities (e.g., rhythm 
disturbances, coronary blood flow, 
electrolyte disturbances)

- Heart Rate: number of cycles 
within period (bpm)

- Inter-Beat Interval: time between 
cycles (ms)

- Heart Rate Variability: variation in 
IBI

https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/holter-monitor



Electrocardiogram (ECG): inscrutable defined components

P-wave: depolarisation of atria -> atrial systole
PR-interval
QRS complex:  atrial diastole -> depolarisation of ventricles -> ventricular systole
ST segment
T-wave: repolarization of ventricles -> ventricular diastole 
TP segment



Multiple sensors recording same signal improves data

- By capturing a signal 
from multiple sensors 
we get a lot more 
information

- 12-lead ECGs given 
spatial resolution on 
cardiac abnormalities

- Increases analytical 
complexity (e.g., 
handling inter-channel 
covariance + 
autocorrelation)



Electroencephalogram (EEG): many channels

- Electrogram of macroscopic brain 
activity measured from scalp (or 
intracranially).

- Signal from sets of neuron action 
potentials (ion-gated membrane 
de/repolarisation)

- Different electrode layouts/types impact 
signal resolution



Electroencephalogram (EEG): defined frequency bands

- EEG signals get divided 
into defined frequency 
bands

- Different brain activity 
typified by band of majority 
of activity (e.g., Delta -> 
Deep Sleep).

- Patterns in EEG can 
diagnose neurological 
disorders (including sleep 
disorders and epilepsy)



How do we analyse sensor data?



Approaches for sensor data

- Moment (time domain) representation
- Considering the statistical properties of the input data jointly over time

- Spectral (frequency domain) representation
- Analysing the frequency-space representation

- Path (state space) representation
- Describe the system as a dynamic system over time

- Change representation: systems of differential equations
- Not going to discuss these but very common classical statistic/applied maths approach to 

sensor data.
- Stochastic (SDEs) or deterministic (ODEs)



Time Domain: Decomposition

- Decomposition enables 
measuring strength of trend 
and seasonality 

- Estimate trend/cycle using 
moving average

- Moving average: smooth 
series using average over 
window (size = order)

- Detrend series: signal - 
moving average

- Moving average of detrended 
data: seasonality

- Multiplicative decomposition 
(divide rather than subtract)

- More advanced modern 
decomposition methods 
(STL/SEATS/X11)



Time Domain: Differencing and AutoRegressive models

- Differencing: computed differences between consecutive observations
- AutoRegression: Predict value at time t based on linear combination of past 

values of variable: yt = θ1yt-1 +θ2yt-2 + … + θpyt-p + εt

- Order of model is number of lagged values used
- Θ1 = 0 represents white noise 
- Θ1 = 1 represents a random walk (with or without constant drift)



Time Domain: Moving Average models

- Instead of past values predict using past errors: 

yt =  εt + θ1εt-1 +θ2εt-2 + … + θpεt-q

- For stationary data AR(p) = MA(inf)
- Not to be confused with moving average smoothing used in decomposition



ARIMA: Combining Differencing, AR and MA models

- AutoRegressive Integrated Moving Average: Predict differenced value of y (y’) 
using lagged values and errors

- y′t=θ1y′t−1+⋯+θpy′t−p+θ1εt−1+⋯+θqεt−q+εt

- ARIMA(p,d,q): p = order of AR, d = differencing degree, q = order of MA

- Requires MLE / Information Criterion to fit orders
- Core of gold-standard time-series regression/forecasting method
- More advanced methods: 

- Vector Autoregression (VAR): enables feedback between forecasted variable and predictors 
(more realistic for real-world data)

- Feed lagged values (or error) into ML model e.g., neural network with or without convolutions 



Frequency/Spectral Domain

- Signal composed of multiple 
frequencies (e.g., EEG power 
bands)

- Can greatly simplify analysis 
(offers simple decomposition)

- Feeds into many useful 
mathematical tools (resonance, 
harmonics, power spectral 
densities, eigenvalues, …)

- Several different ways of 
converting time-domain to 
frequency-domain

- Laplace and fourier methods are 
most common



Frequency Domain: Fourier Transform

- Fourier Transform: 

Time -> Frequency 

- Inverse Fourier Transform: 

Frequency -> Time

- Decompose signal into series of angular 
components

x(t) = a sin(ωt + φ) = a sin(2πf t + φ)

- Location (frequency) and height 
(amplitude) of frequency spectra peaks 
(among other statistical summaries of 
spectral space) can be used as input for 
whatever model you want.



Time-Frequency Domain: Wavelet Transforms

- Fourier transform has great frequency resolution but no time 
resolution

- Wavelet allows retaining frequency and time resolution: capture 
dynamic frequency spectra within signal

- Convolve signal with variety of waves (wavelets) with scale 
(frequency) and location (time) properties

- Wavelet can be learnt a la convolutional kernels



State-space models: Hidden Markov Models
- Data is represented resulting from a series of hidden states
- Model describes movements between hidden states
- Observed values are derived from hidden states
- Markov property: only previous state(s) matter
- More naturally discrete time (but continuous time possible)
- Well suited to classification/detection



Going beyond HMMs
- RNNs can act like HMMs more complex dependencies
- Alternative state space models: best of both worlds
- Attention mechanism similar to soft/variable-order HMMs

https://www.vanderschaar-lab.com/
papers/2022_AAAI_tutorial_web.pd
f



Decomposing data from multiple sensors

- Measured medical 
phenomena are 
often a mixture of 
signals from 
different sources

- Multiple sensors = 
each captures those 
sources (or a 
subset) 

- Same source 
through different 
sensors will have 
different 
characteristics 
(amplitude, lag) due 
to sensor location



Decomposing data from multiple sensors: Independent 
Component Analysis  

- Decompose signal into linear mixture of independent sources
- Part of most EEG analysis/processing workflows
- “Sphering” data (remove correlations between channels: cholesky 

decomposition with covariation matrix)
- Identify gaussian components of sphered (aka “whitened”) matrix



Gaussian Processes: non-parametric models with infinite 
parameters 

- Bayesian linear regression: find distribution 
over the parameters consistent with 
observed data

- Gaussian process: find distribution over all 
possible functions that are consistent with 
observed data

- Defined by covariance kernel between 
functions (draws from multivariate 
gaussian)

- Can capture time, frequency, and 
state-space models

- Yet another “should be an entire graduate 
course”



Gaussian Process Prior



Gaussian Process Prior
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Constrain prior based on observed data: posterior



Constrain prior based on observed data: posterior



Constrain prior based on observed data: posterior



Probabilistic numerics: data efficient framework
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Probabilistic numerics: data efficient framework



Let’s discuss some case studies



Cough detection/classification

- Quick/Non-invasive screening of COVID-19 could protect health 
resources/optimise non-pharmaceutical interventions

- Crowdsourced cough recordings

10.1038/s41598-021-95042-2



Cough detection/classification

- Quick/Non-invasive screening of COVID-19 could protect health 
resources/optimise non-pharmaceutical interventions

- Crowdsourced cough recordings
CNN/VGGish transfer: Precision 

~0.65

10.1038/s41598-021-95042-2



Electrocardiogram (ECG)

Many useful and useless analyses of ECGs:

- Predict age and sex
- Detect anaemia (>90% accuracy with demographic data)
- Predict likelihood of low ejection fraction
- Automated detection of amyloid heart/cardiomyopathy/mitral valve prolapse
- Predict 1-year mortality (AUC > 0.85)

Methods generally require some form of ECG segmentation:



Dynamic Time-Warping beat segmentation

- Clean ECG: just identify highest peaks 
but ECG is often noisy

- Know what a heartbeat looks like: align 
to ECG 

- Often detecting arrhythmias/abnormal 
heartbeats: may not align

- Allow time to be “fuzzy” in alignment: 
dynamic time warping



Wavelet Transform Beat Segmentation

- Wavelet transforms can make R-peaks 
very clear even in noisy data

- Hand-crafted features can then be 
extracted  

- Alternatively deep models can 
be used to learn wavelets and 
segmentations (unsupervised or 
supervised)



Predicting epileptic seizures  

- Epilepsy has a global prevalence of 1% (80 million)
- 30% of cases not treatable with anti-epiletic medication  (2.4 million)
- Unpredictability of seizures is major source of mortality and morbidity 
- Permanent intracranial EEGs now possible

10.1038/s41582-018-0055-2



Lots of research

- 2007 review: insufficient evidence that seizures can be predicted

10.1038/s41582-018-0055-2



Nulls for periodic signal can be challenging 

- Randomly shuffle seizure onset times => no pre-2007 actually worked

https://en.wikipedia.org/wiki/File:Yang_and_Schank_2006_converging_diverging_cycles2.jpg



Most take a similar approach

- Inherently unbalanced data (seizures are rare compared to interictal EEG)
- Non-continuous datasets (i.e., inter-ictal and pre-ictal chunks) can make task 

easier than reality
- Scoring predictions is challenging (prediction window / time to seizure onset)
- Suitable baseline performance metric (random prediction: diurnal?)
- Inter-person variance can be large (electrode placement, cycles)



American Epilepsy Society Seizure Prediction Challenge

- Winning entry: well-crafted features for GLMs (averages with RF)
- General approach: bunch of features into large ensemble models
- 2014 (still relatively early days for CNNs being used outside of images)



Modern approaches

- Deep neural networks 
(static or dynamic input)

- Learnt representations of 
EEGs (wavelet, kernels, 
attention, embeddings)

- Still suffer from inter-person 
variance (and relatively 
rarity of seizures): 
individualised tuning

- Specificity still challenging



High variance clinical trials: implementation science is key

- 3-100% accuracy across >=3 seizures across individuals
- Seizures are non-random (short and long-term temporal dependence)
- Diving into why they don’t haven’t worked:

- Individual seizure frequency
- long-term temporal variations in seizure frequency
- multimodal distributions of seizure duration and inter-ictal intervals

Lessons learnt:

- EEGs give poor mechanistic insight
- Emerging ideas about how seizures work: excitation/inhibition imbalance vs 

aberrant behaviour emerging from network parameters
- Implementation science is often more important than underlying ML
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